170 research outputs found

    A Statistical Model of Riemannian Metric Variation for Deformable Shape Analysis

    Get PDF
    The analysis of deformable 3D shape is often cast in terms of the shape's intrinsic geometry due to its invariance to a wide range of non-rigid deformations. However, object's plasticity in non-rigid transformation often result in transformations that are not completely isometric in the surface's geometry and whose mode of deviation from isometry is an identifiable characteristic of the shape and its deformation modes. In this paper, we propose a novel generative model of the variations of the intrinsic metric of de formable shapes, based on the spectral decomposition of the Laplace-Beltrami operator. To this end, we assume two independent models for the eigenvectors and the eigenvalues of the graph-Laplacian of a 3D mesh which are learned in a supervised way from a set of shapes belonging to the same class. We show how this model can be efficiently learned given a set of 3D meshes, and evaluate the performance of the resulting generative model in shape classification and retrieval tasks. Comparison with state-of-the-art solutions for these problems confirm the validity of the approach

    An adaptive hierarchical approach to the extraction of high resolution medial surfaces

    Get PDF
    We introduce a novel algorithm for medial surfaces extraction that is based on the density-corrected Hamiltonian analysis. The approach extracts the skeleton directly from a triangulated mesh and adopts an adaptive octree-based approach in which only skeletal voxels are refined to a lower level of the hierarchy, resulting in robust and accurate skeletons at extremely high resolution. The quality of the extracted medial surfaces is confirmed by an extensive set of experiments

    Measuring vertex centrality using the Holevo quantity

    Get PDF
    In recent years, the increasing availability of data describing the dynamics of real-world systems led to a surge of interest in the complex networks of interactions that emerge from such systems. Several measures have been introduced to analyse these networks, and among them one of the most fundamental ones is vertex centrality, which quantifies the importance of a vertex within a graph. In this paper, we propose a novel vertex centrality measure based on the quantum information theoretical concept of Holevo quantity. More specifically, we measure the importance of a vertex in terms of the variation in graph entropy before and after its removal from the graph. More specifically, we find that the centrality of a vertex v can be broken down in two parts: (1) one which is negatively correlated with the degree centrality of v, and (2) one which depends on the emergence of non-trivial structures in the graph when v is disconnected from the rest of the graph. Finally, we evaluate our centrality measure on a number of real-world as well as synthetic networks, and we compare it against a set of commonly used alternative measures

    Efficient computation of decoherent quantum walks through eigenvalue perturbation

    Get PDF
    A number of recent studies have investigated the introduction of decoherence in quantum walks and the resulting transition to classical random walks. Interestingly,it has been shown that algorithmic properties of quantum walks with decoherence such as the spreading rate are sometimes better than their purely quantum counterparts. Not only quantum walks with decoherence provide a generalization of quantum walks that naturally encompasses both the quantum and classical case, but they also give rise to new and different probability distribution. The application of quantum walks with decoherence to large graphs is limited by the necessity of evolving state vector whose sizes quadratic in the number of nodes of the graph, as opposed to the linear state vector of the purely quantum (or classical) case. In this technical report,we show how to use perturbation theory to reduce the computational complexity of evolving a continuous-time quantum walk subject to decoherence. More specifically, given a graph over n nodes, we show how to approximate the eigendecomposition of the n2Ă—n2 Lindblad super-operator from the eigendecomposition of the nĂ—n graph Hamiltonian

    On the k-anonymization of time-varying and multi-layer social graphs

    Get PDF
    The popularity of online social media platforms provides an unprecedented opportunity to study real-world complex networks of interactions. However, releasing this data to researchers and the public comes at the cost of potentially exposing private and sensitive user information. It has been shown that a naive anonymization of a network by removing the identity of the nodes is not sufficient to preserve users’ privacy. In order to deal with malicious attacks, k -anonymity solutions have been proposed to partially obfuscate topological information that can be used to infer nodes’ identity. In this paper, we study the problem of ensuring k anonymity in time-varying graphs, i.e., graphs with a structure that changes over time, and multi-layer graphs, i.e., graphs with multiple types of links. More specifically, we examine the case in which the attacker has access to the degree of the nodes. The goal is to generate a new graph where, given the degree of a node in each (temporal) layer of the graph, such a node remains indistinguishable from other k-1 nodes in the graph. In order to achieve this, we find the optimal partitioning of the graph nodes such that the cost of anonymizing the degree information within each group is minimum. We show that this reduces to a special case of a Generalized Assignment Problem, and we propose a simple yet effective algorithm to solve it. Finally, we introduce an iterated linear programming approach to enforce the realizability of the anonymized degree sequences. The efficacy of the method is assessed through an extensive set of experiments on synthetic and real-world graphs

    Un barbiere violinista e suonatore di tarantella nel Seicento: Matteo Allegretto di Gallipoli

    Get PDF
    The following essay studies the barber Matteo Allegretto from Gallipoli, focusing on his secondary work of musician, especially of tarantelle, according to his testimony gave in a trial for homicide happened in the 1659 in Gallipoli

    Measuring graph similarity through continuous-time quantum walks and the quantum Jensen-Shannon divergence

    Get PDF
    In this paper we propose a quantum algorithm to measure the similarity between a pair of unattributed graphs. We design an experiment where the two graphs are merged by establishing a complete set of connections between their nodes and the resulting structure is probed through the evolution of continuous-time quantum walks. In order to analyze the behavior of the walks without causing wave function collapse, we base our analysis on the recently introduced quantum Jensen-Shannon divergence. In particular, we show that the divergence between the evolution of two suitably initialized quantum walks over this structure is maximum when the original pair of graphs is isomorphic. We also prove that under special conditions the divergence is minimum when the sets of eigenvalues of the Hamiltonians associated with the two original graphs have an empty intersection

    Deep Demosaicing for Polarimetric Filter Array Cameras

    Get PDF
    Polarisation Filter Array (PFA) cameras allow the analysis of light polarisation state in a simple and cost-effective manner. Such filter arrays work as the Bayer pattern for colour cameras, sharing similar advantages and drawbacks. Among the others, the raw image must be demosaiced considering the local variations of the PFA and the characteristics of the imaged scene. Non-linear effects, like the cross-talk among neighbouring pixels, are difficult to explicitly model and suggest the potential advantage of a data-driven learning approach. However, the PFA cannot be removed from the sensor, making it difficult to acquire the ground-truth polarization state for training. In this work we propose a novel CNN-based model which directly demosaics the raw camera image to a per-pixel Stokes vector. Our contribution is twofold. First, we propose a network architecture composed by a sequence of Mosaiced Convolutions operating coherently with the local arrangement of the different filters. Second, we introduce a new method, employing a consumer LCD screen, to effectively acquire real-world data for training. The process is designed to be invariant by monitor gamma and external lighting conditions. We extensively compared our method against algorithmic and learning-based demosaicing techniques, obtaining a consistently lower error especially in terms of polarisation angle
    • …
    corecore